XPlor/compressor.h
2025-02-19 19:17:31 -05:00

415 lines
17 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef COMPRESSOR_H
#define COMPRESSOR_H
#include "utils.h"
#include "QtZlib/zlib.h"
#include "lzokay.hpp"
#include "lzx.h"
#include "statusbarmanager.h"
#include <stdint.h>
#include <stddef.h>
#include <QByteArray>
#include <QDebug>
#include <QDataStream>
#include <QVector>
#include <algorithm>
typedef enum {
EResult_LookbehindOverrun = -4,
EResult_OutputOverrun = -3,
EResult_InputOverrun = -2,
EResult_Error = -1,
EResult_Success = 0,
EResult_InputNotConsumed = 1,
} lzokay_EResult;
static_assert(EResult_LookbehindOverrun == lzokay_EResult(lzokay::EResult::LookbehindOverrun), "LookbehindOverrun mismatch");
static_assert(EResult_OutputOverrun == lzokay_EResult(lzokay::EResult::OutputOverrun), "OutputOverrun mismatch");
static_assert(EResult_InputOverrun == lzokay_EResult(lzokay::EResult::InputOverrun), "InputOverrun mismatch");
static_assert(EResult_Error == lzokay_EResult(lzokay::EResult::Error), "Error mismatch");
static_assert(EResult_Success == lzokay_EResult(lzokay::EResult::Success), "Success mismatch");
static_assert(EResult_InputNotConsumed == lzokay_EResult(lzokay::EResult::InputNotConsumed), "InputNotConsumed mismatch");
class Compressor {
public:
static QByteArray DecompressZLIB(const QByteArray &compressedData) {
if (compressedData.isEmpty())
return QByteArray();
// Set up the inflate stream.
z_stream strm;
memset(&strm, 0, sizeof(strm));
// The inflate() function needs a non-const pointer; this is safe as we never modify the input.
strm.next_in = reinterpret_cast<Bytef*>(const_cast<char*>(compressedData.data()));
strm.avail_in = static_cast<uInt>(compressedData.size());
// Use inflateInit(); if you want to support gzip streams, see note below.
int ret = inflateInit(&strm);
if (ret != Z_OK) {
qWarning() << "inflateInit failed:" << zError(ret);
return QByteArray();
}
QByteArray outArray;
char buffer[4096];
// Decompress until we reach the stream end.
int index = 0;
do {
StatusBarManager::instance().updateProgressStatus("Processing Decompressing ZLib Data", index++, index++);
strm.next_out = reinterpret_cast<Bytef*>(buffer);
strm.avail_out = sizeof(buffer);
ret = inflate(&strm, Z_NO_FLUSH);
// Handle a special case: if inflate() returns Z_BUF_ERROR without
// having produced any output and with no further input, then we break out.
if (ret == Z_BUF_ERROR && strm.avail_in == 0) {
break;
}
if (ret != Z_OK && ret != Z_STREAM_END) {
qWarning() << "Error: ZLib inflate failed:" << zError(ret);
inflateEnd(&strm);
return QByteArray();
}
// Calculate number of bytes produced in this iteration.
int bytesProduced = sizeof(buffer) - strm.avail_out;
if (bytesProduced > 0)
outArray.append(buffer, bytesProduced);
} while (ret != Z_STREAM_END);
inflateEnd(&strm);
return outArray;
}
static QByteArray DecompressLZO(const QByteArray& input) {
lzokay::EResult error;
// Ensure the input QByteArray is valid
if (input.isEmpty()) {
qDebug() << "Input QByteArray is empty.";
return QByteArray();
}
// Step 1: Cast QByteArray to uint8_t*
const uint8_t *compressedData = reinterpret_cast<const uint8_t *>(input.constData());
std::size_t compressedSize = static_cast<std::size_t>(input.size());
// Step 2: Allocate a sufficiently large decompression buffer
// Use a large initial estimate if the decompressed size is unknown
std::size_t initialBufferSize = compressedSize * 20; // Arbitrary multiplier for decompression
std::unique_ptr<uint8_t[]> decompressed(new uint8_t[initialBufferSize]);
// Step 3: Attempt decompression
std::size_t decompressedSize = 0;
error = lzokay::decompress(
compressedData, compressedSize, // Input data and size
decompressed.get(), initialBufferSize, // Output buffer and initial size
decompressedSize // Actual decompressed size
);
// Step 4: Handle decompression errors
if (error != lzokay::EResult::Success) {
qDebug() << "Decompression failed with error code:" << static_cast<int>(error);
return QByteArray();
}
// Step 5: Return the decompressed data as a QByteArray
return QByteArray(reinterpret_cast<const char *>(decompressed.get()), decompressedSize);
}
static const int VECTOR_SIZE = 16; // 16 32-bit words
static const int NUM_OF_BLOCKS_PER_CHUNK = 8192;
//--------------------------------------------------------------------
// Helper functions (assuming littleendian order)
static void Convert32BitTo8Bit(quint32 value, quint8* array) {
array[0] = static_cast<quint8>(value >> 0);
array[1] = static_cast<quint8>(value >> 8);
array[2] = static_cast<quint8>(value >> 16);
array[3] = static_cast<quint8>(value >> 24);
}
static quint32 ConvertArrayTo32Bit(const QByteArray &array) {
return ((static_cast<quint32>(static_cast<uchar>(array[0])) << 0) |
(static_cast<quint32>(static_cast<uchar>(array[1])) << 8) |
(static_cast<quint32>(static_cast<uchar>(array[2])) << 16) |
(static_cast<quint32>(static_cast<uchar>(array[3])) << 24));
}
static quint32 Rotate(quint32 value, quint32 numBits) {
return (value << numBits) | (value >> (32 - numBits));
}
// Build the IV table from a 0x20byte feed. The table is 0xFB0 bytes.
static QByteArray InitIVTable(const QByteArray &feed) {
const int tableSize = 0xFB0;
QByteArray table;
table.resize(tableSize);
int ptr = 0;
for (int i = 0; i < 200; ++i) {
for (int x = 0; x < 5; ++x) {
if (static_cast<uchar>(feed.at(ptr)) == 0x00)
ptr = 0;
int base = i * 20 + x * 4;
table[base] = feed.at(ptr);
table[base + 1] = feed.at(ptr);
table[base + 2] = feed.at(ptr);
table[base + 3] = feed.at(ptr);
++ptr;
}
}
// Copy block numbers [1,0,0,0] into the last 16 bytes
QByteArray oneBlock;
oneBlock.append(char(1)); oneBlock.append(char(0)); oneBlock.append(char(0)); oneBlock.append(char(0));
table.replace(0xFA0, 4, oneBlock);
table.replace(0xFA4, 4, oneBlock);
table.replace(0xFA8, 4, oneBlock);
table.replace(0xFAC, 4, oneBlock);
return table;
}
// "unk" function as in the C# code.
static int unk(quint64 arg1, quint8 arg2) {
if (arg2 >= 0x40)
return 0;
return static_cast<int>(arg1 >> arg2);
}
// Compute the IV for a given section index using the IV table.
static QByteArray GetIV(const QByteArray &table, int index) {
int num1 = 0xFA0 + index;
int num2 = unk(0x51EB851FLL * num1, 0x20);
int adjust = ((num2 >> 6) + (num2 >> 31));
int startIndex = 20 * (num1 - 200 * adjust);
// Return 8 bytes from that location.
return table.mid(startIndex, 8);
}
// Update the IV table given the section's SHA1 hash.
static void UpdateIVTable(QByteArray &table, int index, const QByteArray &sectionHash) {
int blockNumIndex = index % 4;
int baseOffset = 0xFA0 + blockNumIndex * 4;
quint32 blockNumVal = (static_cast<uchar>(table.at(baseOffset)) ) |
(static_cast<uchar>(table.at(baseOffset + 1)) << 8 ) |
(static_cast<uchar>(table.at(baseOffset + 2)) << 16) |
(static_cast<uchar>(table.at(baseOffset + 3)) << 24);
int blockNum = blockNumVal * 4 + index;
int num2 = unk(0x51EB851FLL * blockNum, 0x20);
int adjust = ((num2 >> 6) + (num2 >> 31));
int startIndex = 20 * (blockNum - 200 * adjust) + 1;
int hashIndex = 0;
for (int x = 0; x < 4; ++x) {
table[startIndex - 1] = table.at(startIndex - 1) ^ sectionHash.at(hashIndex);
table[startIndex] = table.at(startIndex) ^ sectionHash.at(hashIndex + 1);
table[startIndex + 1] = table.at(startIndex + 1) ^ sectionHash.at(hashIndex + 2);
table[startIndex + 2] = table.at(startIndex + 2) ^ sectionHash.at(hashIndex + 3);
table[startIndex + 3] = table.at(startIndex + 3) ^ sectionHash.at(hashIndex + 4);
startIndex += 5;
hashIndex += 5;
}
}
static quint32 ToUInt32(const QByteArray &data, int offset) {
// Converts 4 bytes (starting at offset) from data into a 32-bit unsigned integer (little-endian)
return ((static_cast<quint32>(static_cast<uchar>(data[offset])) ) |
(static_cast<quint32>(static_cast<uchar>(data[offset+1])) << 8 ) |
(static_cast<quint32>(static_cast<uchar>(data[offset+2])) << 16) |
(static_cast<quint32>(static_cast<uchar>(data[offset+3])) << 24));
}
//--------------------------------------------------------------------
// Salsa20 decryption for one section.
// This function resets the counter for each section.
static QByteArray salsa20DecryptSection(const QByteArray &sectionData, const QByteArray &key, const QByteArray &iv, int blockSize = 64)
{
// Choose the appropriate constant based on key length.
QByteArray constants;
if (key.size() == 32)
constants = "expand 32-byte k";
else if (key.size() == 16)
constants = "expand 16-byte k";
else {
qWarning() << "Invalid key size:" << key.size() << "; expected 16 or 32 bytes.";
return QByteArray();
}
QVector<quint32> state(VECTOR_SIZE);
// Set state[0] using the first 4 bytes of the constant.
state[0] = ConvertArrayTo32Bit(constants.mid(0, 4));
// state[1] through state[4] come from the first 16 bytes of the key.
state[1] = ToUInt32(key, 0);
state[2] = ToUInt32(key, 4);
state[3] = ToUInt32(key, 8);
state[4] = ToUInt32(key, 12);
// state[5] comes from the next 4 bytes of the constant.
state[5] = ConvertArrayTo32Bit(constants.mid(4, 4));
// state[6] and state[7] come from the IV (which must be 8 bytes).
state[6] = ConvertArrayTo32Bit(iv.mid(0, 4));
state[7] = ConvertArrayTo32Bit(iv.mid(4, 4));
// state[8] and state[9] are the 64-bit block counter (start at 0).
state[8] = 0;
state[9] = 0;
// state[10] comes from the next 4 bytes of the constant.
state[10] = ConvertArrayTo32Bit(constants.mid(8, 4));
// For state[11] through state[14]:
// If the key is 32 bytes, use bytes 16..31; if 16 bytes, reuse the first 16 bytes.
if (key.size() == 32) {
state[11] = ToUInt32(key, 16);
state[12] = ToUInt32(key, 20);
state[13] = ToUInt32(key, 24);
state[14] = ToUInt32(key, 28);
} else { // key.size() == 16
state[11] = ToUInt32(key, 0);
state[12] = ToUInt32(key, 4);
state[13] = ToUInt32(key, 8);
state[14] = ToUInt32(key, 12);
}
// state[15] comes from the last 4 bytes of the constant.
state[15] = ConvertArrayTo32Bit(constants.mid(12, 4));
// Prepare the output buffer.
QByteArray output(sectionData.size(), Qt::Uninitialized);
int numBlocks = sectionData.size() / blockSize;
int remainder = sectionData.size() % blockSize;
// Process each full block.
for (int blockIndex = 0; blockIndex < numBlocks; ++blockIndex) {
QVector<quint32> x = state; // make a copy of the current state for this block
// Run 20 rounds (10 iterations) of Salsa20.
for (int round = 20; round > 0; round -= 2) {
x[4] ^= Rotate(x[0] + x[12], 7);
x[8] ^= Rotate(x[4] + x[0], 9);
x[12] ^= Rotate(x[8] + x[4], 13);
x[0] ^= Rotate(x[12] + x[8], 18);
x[9] ^= Rotate(x[5] + x[1], 7);
x[13] ^= Rotate(x[9] + x[5], 9);
x[1] ^= Rotate(x[13] + x[9], 13);
x[5] ^= Rotate(x[1] + x[13], 18);
x[14] ^= Rotate(x[10] + x[6], 7);
x[2] ^= Rotate(x[14] + x[10], 9);
x[6] ^= Rotate(x[2] + x[14], 13);
x[10] ^= Rotate(x[6] + x[2], 18);
x[3] ^= Rotate(x[15] + x[11], 7);
x[7] ^= Rotate(x[3] + x[15], 9);
x[11] ^= Rotate(x[7] + x[3], 13);
x[15] ^= Rotate(x[11] + x[7], 18);
x[1] ^= Rotate(x[0] + x[3], 7);
x[2] ^= Rotate(x[1] + x[0], 9);
x[3] ^= Rotate(x[2] + x[1], 13);
x[0] ^= Rotate(x[3] + x[2], 18);
x[6] ^= Rotate(x[5] + x[4], 7);
x[7] ^= Rotate(x[6] + x[5], 9);
x[4] ^= Rotate(x[7] + x[6], 13);
x[5] ^= Rotate(x[4] + x[7], 18);
x[11] ^= Rotate(x[10] + x[9], 7);
x[8] ^= Rotate(x[11] + x[10], 9);
x[9] ^= Rotate(x[8] + x[11], 13);
x[10] ^= Rotate(x[9] + x[8], 18);
x[12] ^= Rotate(x[15] + x[14], 7);
x[13] ^= Rotate(x[12] + x[15], 9);
x[14] ^= Rotate(x[13] + x[12], 13);
x[15] ^= Rotate(x[14] + x[13], 18);
}
// Produce the 64-byte keystream block by adding the original state.
QVector<quint8> keyStreamBlock(blockSize);
for (int i = 0; i < VECTOR_SIZE; ++i) {
x[i] += state[i];
Convert32BitTo8Bit(x[i], keyStreamBlock.data() + 4 * i);
}
// XOR the keystream block with the corresponding block of sectionData.
const uchar* inBlock = reinterpret_cast<const uchar*>(sectionData.constData()) + blockIndex * blockSize;
uchar* outBlock = reinterpret_cast<uchar*>(output.data()) + blockIndex * blockSize;
for (int j = 0; j < blockSize; ++j) {
outBlock[j] = inBlock[j] ^ keyStreamBlock[j];
}
// Increment the 64-bit block counter.
state[8]++;
if (state[8] == 0)
state[9]++;
}
// Process any remaining bytes.
if (remainder > 0) {
QVector<quint32> x = state;
for (int round = 20; round > 0; round -= 2) {
x[4] ^= Rotate(x[0] + x[12], 7);
x[8] ^= Rotate(x[4] + x[0], 9);
x[12] ^= Rotate(x[8] + x[4], 13);
x[0] ^= Rotate(x[12] + x[8], 18);
x[9] ^= Rotate(x[5] + x[1], 7);
x[13] ^= Rotate(x[9] + x[5], 9);
x[1] ^= Rotate(x[13] + x[9], 13);
x[5] ^= Rotate(x[1] + x[13], 18);
x[14] ^= Rotate(x[10] + x[6], 7);
x[2] ^= Rotate(x[14] + x[10], 9);
x[6] ^= Rotate(x[2] + x[14], 13);
x[10] ^= Rotate(x[6] + x[2], 18);
x[3] ^= Rotate(x[15] + x[11], 7);
x[7] ^= Rotate(x[3] + x[15], 9);
x[11] ^= Rotate(x[7] + x[3], 13);
x[15] ^= Rotate(x[11] + x[7], 18);
x[1] ^= Rotate(x[0] + x[3], 7);
x[2] ^= Rotate(x[1] + x[0], 9);
x[3] ^= Rotate(x[2] + x[1], 13);
x[0] ^= Rotate(x[3] + x[2], 18);
x[6] ^= Rotate(x[5] + x[4], 7);
x[7] ^= Rotate(x[6] + x[5], 9);
x[4] ^= Rotate(x[7] + x[6], 13);
x[5] ^= Rotate(x[4] + x[7], 18);
x[11] ^= Rotate(x[10] + x[9], 7);
x[8] ^= Rotate(x[11] + x[10], 9);
x[9] ^= Rotate(x[8] + x[11], 13);
x[10] ^= Rotate(x[9] + x[8], 18);
x[12] ^= Rotate(x[15] + x[14], 7);
x[13] ^= Rotate(x[12] + x[15], 9);
x[14] ^= Rotate(x[13] + x[12], 13);
x[15] ^= Rotate(x[14] + x[13], 18);
}
QVector<quint8> keyStreamBlock(blockSize);
for (int i = 0; i < VECTOR_SIZE; ++i) {
x[i] += state[i];
Convert32BitTo8Bit(x[i], keyStreamBlock.data() + 4 * i);
}
const uchar* inBlock = reinterpret_cast<const uchar*>(sectionData.constData()) + numBlocks * blockSize;
uchar* outBlock = reinterpret_cast<uchar*>(output.data()) + numBlocks * blockSize;
for (int j = 0; j < remainder; ++j)
outBlock[j] = inBlock[j] ^ keyStreamBlock[j];
}
return output;
}
};
#endif // COMPRESSOR_H