XPlor/libs/encryption/encryption.h

467 lines
18 KiB
C
Raw Normal View History

2025-04-04 20:34:24 -04:00
#ifndef ENCRYPTION_H
#define ENCRYPTION_H
2025-02-08 19:58:54 -05:00
#include <QDataStream>
2025-03-01 20:38:52 -05:00
#include <QFile>
2025-04-04 20:34:24 -04:00
#include <QDebug>
#include <QCryptographicHash>
2025-02-08 19:58:54 -05:00
2025-04-04 20:34:24 -04:00
#include "ecrypt-sync.h"
#include "QtZlib/zlib.h"
2025-02-08 19:58:54 -05:00
2025-04-04 20:34:24 -04:00
class Encryption {
public:
2025-02-08 19:58:54 -05:00
static const int VECTOR_SIZE = 16; // 16 32-bit words
static const int NUM_OF_BLOCKS_PER_CHUNK = 8192;
//--------------------------------------------------------------------
// Helper functions (assuming littleendian order)
static void Convert32BitTo8Bit(quint32 value, quint8* array) {
array[0] = static_cast<quint8>(value >> 0);
array[1] = static_cast<quint8>(value >> 8);
array[2] = static_cast<quint8>(value >> 16);
array[3] = static_cast<quint8>(value >> 24);
}
static quint32 ConvertArrayTo32Bit(const QByteArray &array) {
return ((static_cast<quint32>(static_cast<uchar>(array[0])) << 0) |
(static_cast<quint32>(static_cast<uchar>(array[1])) << 8) |
(static_cast<quint32>(static_cast<uchar>(array[2])) << 16) |
(static_cast<quint32>(static_cast<uchar>(array[3])) << 24));
}
static quint32 Rotate(quint32 value, quint32 numBits) {
return (value << numBits) | (value >> (32 - numBits));
}
// Build the IV table from a 0x20byte feed. The table is 0xFB0 bytes.
static QByteArray InitIVTable(const QByteArray &feed) {
const int tableSize = 0xFB0;
QByteArray table;
table.resize(tableSize);
int ptr = 0;
for (int i = 0; i < 200; ++i) {
for (int x = 0; x < 5; ++x) {
if (static_cast<uchar>(feed.at(ptr)) == 0x00)
ptr = 0;
int base = i * 20 + x * 4;
table[base] = feed.at(ptr);
table[base + 1] = feed.at(ptr);
table[base + 2] = feed.at(ptr);
table[base + 3] = feed.at(ptr);
++ptr;
}
}
// Copy block numbers [1,0,0,0] into the last 16 bytes
QByteArray oneBlock;
oneBlock.append(char(1)); oneBlock.append(char(0)); oneBlock.append(char(0)); oneBlock.append(char(0));
table.replace(0xFA0, 4, oneBlock);
table.replace(0xFA4, 4, oneBlock);
table.replace(0xFA8, 4, oneBlock);
table.replace(0xFAC, 4, oneBlock);
return table;
}
// "unk" function as in the C# code.
static int unk(quint64 arg1, quint8 arg2) {
if (arg2 >= 0x40)
return 0;
return static_cast<int>(arg1 >> arg2);
}
// Compute the IV for a given section index using the IV table.
static QByteArray GetIV(const QByteArray &table, int index) {
int num1 = 0xFA0 + index;
int num2 = unk(0x51EB851FLL * num1, 0x20);
int adjust = ((num2 >> 6) + (num2 >> 31));
int startIndex = 20 * (num1 - 200 * adjust);
// Return 8 bytes from that location.
return table.mid(startIndex, 8);
}
// Update the IV table given the section's SHA1 hash.
static void UpdateIVTable(QByteArray &table, int index, const QByteArray &sectionHash) {
int blockNumIndex = index % 4;
int baseOffset = 0xFA0 + blockNumIndex * 4;
quint32 blockNumVal = (static_cast<uchar>(table.at(baseOffset)) ) |
(static_cast<uchar>(table.at(baseOffset + 1)) << 8 ) |
(static_cast<uchar>(table.at(baseOffset + 2)) << 16) |
(static_cast<uchar>(table.at(baseOffset + 3)) << 24);
int blockNum = blockNumVal * 4 + index;
int num2 = unk(0x51EB851FLL * blockNum, 0x20);
int adjust = ((num2 >> 6) + (num2 >> 31));
int startIndex = 20 * (blockNum - 200 * adjust) + 1;
int hashIndex = 0;
for (int x = 0; x < 4; ++x) {
table[startIndex - 1] = table.at(startIndex - 1) ^ sectionHash.at(hashIndex);
table[startIndex] = table.at(startIndex) ^ sectionHash.at(hashIndex + 1);
table[startIndex + 1] = table.at(startIndex + 1) ^ sectionHash.at(hashIndex + 2);
table[startIndex + 2] = table.at(startIndex + 2) ^ sectionHash.at(hashIndex + 3);
table[startIndex + 3] = table.at(startIndex + 3) ^ sectionHash.at(hashIndex + 4);
startIndex += 5;
hashIndex += 5;
}
}
static quint32 ToUInt32(const QByteArray &data, int offset) {
// Converts 4 bytes (starting at offset) from data into a 32-bit unsigned integer (little-endian)
return ((static_cast<quint32>(static_cast<uchar>(data[offset])) ) |
(static_cast<quint32>(static_cast<uchar>(data[offset+1])) << 8 ) |
(static_cast<quint32>(static_cast<uchar>(data[offset+2])) << 16) |
(static_cast<quint32>(static_cast<uchar>(data[offset+3])) << 24));
}
//--------------------------------------------------------------------
// Salsa20 decryption for one section.
// This function resets the counter for each section.
static QByteArray salsa20DecryptSection(const QByteArray &sectionData, const QByteArray &key, const QByteArray &iv, int blockSize = 64)
{
// Choose the appropriate constant based on key length.
QByteArray constants;
if (key.size() == 32)
constants = "expand 32-byte k";
else if (key.size() == 16)
constants = "expand 16-byte k";
else {
qWarning() << "Invalid key size:" << key.size() << "; expected 16 or 32 bytes.";
return QByteArray();
}
QVector<quint32> state(VECTOR_SIZE);
// Set state[0] using the first 4 bytes of the constant.
state[0] = ConvertArrayTo32Bit(constants.mid(0, 4));
// state[1] through state[4] come from the first 16 bytes of the key.
state[1] = ToUInt32(key, 0);
state[2] = ToUInt32(key, 4);
state[3] = ToUInt32(key, 8);
state[4] = ToUInt32(key, 12);
// state[5] comes from the next 4 bytes of the constant.
state[5] = ConvertArrayTo32Bit(constants.mid(4, 4));
// state[6] and state[7] come from the IV (which must be 8 bytes).
state[6] = ConvertArrayTo32Bit(iv.mid(0, 4));
state[7] = ConvertArrayTo32Bit(iv.mid(4, 4));
// state[8] and state[9] are the 64-bit block counter (start at 0).
state[8] = 0;
state[9] = 0;
// state[10] comes from the next 4 bytes of the constant.
state[10] = ConvertArrayTo32Bit(constants.mid(8, 4));
// For state[11] through state[14]:
// If the key is 32 bytes, use bytes 16..31; if 16 bytes, reuse the first 16 bytes.
if (key.size() == 32) {
state[11] = ToUInt32(key, 16);
state[12] = ToUInt32(key, 20);
state[13] = ToUInt32(key, 24);
state[14] = ToUInt32(key, 28);
} else { // key.size() == 16
state[11] = ToUInt32(key, 0);
state[12] = ToUInt32(key, 4);
state[13] = ToUInt32(key, 8);
state[14] = ToUInt32(key, 12);
}
// state[15] comes from the last 4 bytes of the constant.
state[15] = ConvertArrayTo32Bit(constants.mid(12, 4));
// Prepare the output buffer.
QByteArray output(sectionData.size(), Qt::Uninitialized);
int numBlocks = sectionData.size() / blockSize;
int remainder = sectionData.size() % blockSize;
// Process each full block.
for (int blockIndex = 0; blockIndex < numBlocks; ++blockIndex) {
QVector<quint32> x = state; // make a copy of the current state for this block
// Run 20 rounds (10 iterations) of Salsa20.
for (int round = 20; round > 0; round -= 2) {
x[4] ^= Rotate(x[0] + x[12], 7);
x[8] ^= Rotate(x[4] + x[0], 9);
x[12] ^= Rotate(x[8] + x[4], 13);
x[0] ^= Rotate(x[12] + x[8], 18);
x[9] ^= Rotate(x[5] + x[1], 7);
x[13] ^= Rotate(x[9] + x[5], 9);
x[1] ^= Rotate(x[13] + x[9], 13);
x[5] ^= Rotate(x[1] + x[13], 18);
x[14] ^= Rotate(x[10] + x[6], 7);
x[2] ^= Rotate(x[14] + x[10], 9);
x[6] ^= Rotate(x[2] + x[14], 13);
x[10] ^= Rotate(x[6] + x[2], 18);
x[3] ^= Rotate(x[15] + x[11], 7);
x[7] ^= Rotate(x[3] + x[15], 9);
x[11] ^= Rotate(x[7] + x[3], 13);
x[15] ^= Rotate(x[11] + x[7], 18);
x[1] ^= Rotate(x[0] + x[3], 7);
x[2] ^= Rotate(x[1] + x[0], 9);
x[3] ^= Rotate(x[2] + x[1], 13);
x[0] ^= Rotate(x[3] + x[2], 18);
x[6] ^= Rotate(x[5] + x[4], 7);
x[7] ^= Rotate(x[6] + x[5], 9);
x[4] ^= Rotate(x[7] + x[6], 13);
x[5] ^= Rotate(x[4] + x[7], 18);
x[11] ^= Rotate(x[10] + x[9], 7);
x[8] ^= Rotate(x[11] + x[10], 9);
x[9] ^= Rotate(x[8] + x[11], 13);
x[10] ^= Rotate(x[9] + x[8], 18);
x[12] ^= Rotate(x[15] + x[14], 7);
x[13] ^= Rotate(x[12] + x[15], 9);
x[14] ^= Rotate(x[13] + x[12], 13);
x[15] ^= Rotate(x[14] + x[13], 18);
}
// Produce the 64-byte keystream block by adding the original state.
QVector<quint8> keyStreamBlock(blockSize);
for (int i = 0; i < VECTOR_SIZE; ++i) {
x[i] += state[i];
Convert32BitTo8Bit(x[i], keyStreamBlock.data() + 4 * i);
}
// XOR the keystream block with the corresponding block of sectionData.
const uchar* inBlock = reinterpret_cast<const uchar*>(sectionData.constData()) + blockIndex * blockSize;
uchar* outBlock = reinterpret_cast<uchar*>(output.data()) + blockIndex * blockSize;
for (int j = 0; j < blockSize; ++j) {
outBlock[j] = inBlock[j] ^ keyStreamBlock[j];
}
// Increment the 64-bit block counter.
state[8]++;
if (state[8] == 0)
state[9]++;
}
// Process any remaining bytes.
if (remainder > 0) {
QVector<quint32> x = state;
for (int round = 20; round > 0; round -= 2) {
x[4] ^= Rotate(x[0] + x[12], 7);
x[8] ^= Rotate(x[4] + x[0], 9);
x[12] ^= Rotate(x[8] + x[4], 13);
x[0] ^= Rotate(x[12] + x[8], 18);
x[9] ^= Rotate(x[5] + x[1], 7);
x[13] ^= Rotate(x[9] + x[5], 9);
x[1] ^= Rotate(x[13] + x[9], 13);
x[5] ^= Rotate(x[1] + x[13], 18);
x[14] ^= Rotate(x[10] + x[6], 7);
x[2] ^= Rotate(x[14] + x[10], 9);
x[6] ^= Rotate(x[2] + x[14], 13);
x[10] ^= Rotate(x[6] + x[2], 18);
x[3] ^= Rotate(x[15] + x[11], 7);
x[7] ^= Rotate(x[3] + x[15], 9);
x[11] ^= Rotate(x[7] + x[3], 13);
x[15] ^= Rotate(x[11] + x[7], 18);
x[1] ^= Rotate(x[0] + x[3], 7);
x[2] ^= Rotate(x[1] + x[0], 9);
x[3] ^= Rotate(x[2] + x[1], 13);
x[0] ^= Rotate(x[3] + x[2], 18);
x[6] ^= Rotate(x[5] + x[4], 7);
x[7] ^= Rotate(x[6] + x[5], 9);
x[4] ^= Rotate(x[7] + x[6], 13);
x[5] ^= Rotate(x[4] + x[7], 18);
x[11] ^= Rotate(x[10] + x[9], 7);
x[8] ^= Rotate(x[11] + x[10], 9);
x[9] ^= Rotate(x[8] + x[11], 13);
x[10] ^= Rotate(x[9] + x[8], 18);
x[12] ^= Rotate(x[15] + x[14], 7);
x[13] ^= Rotate(x[12] + x[15], 9);
x[14] ^= Rotate(x[13] + x[12], 13);
x[15] ^= Rotate(x[14] + x[13], 18);
}
QVector<quint8> keyStreamBlock(blockSize);
for (int i = 0; i < VECTOR_SIZE; ++i) {
x[i] += state[i];
Convert32BitTo8Bit(x[i], keyStreamBlock.data() + 4 * i);
}
const uchar* inBlock = reinterpret_cast<const uchar*>(sectionData.constData()) + numBlocks * blockSize;
uchar* outBlock = reinterpret_cast<uchar*>(output.data()) + numBlocks * blockSize;
for (int j = 0; j < remainder; ++j)
outBlock[j] = inBlock[j] ^ keyStreamBlock[j];
}
return output;
}
2025-03-01 20:38:52 -05:00
static void fillIVTable(QByteArray fastFileData, QByteArray& ivTable, quint32 ivTableLength)
{
QDataStream stream(fastFileData);
stream.skipRawData(24);
quint32 nameKeyLength = 0;
for (int i = 0; i < 32 && !stream.atEnd(); i++) {
if (!stream.atEnd() && stream.device()->peek(1).toHex() != "00") {
nameKeyLength++;
stream.skipRawData(1);
} else {
break;
}
}
if (nameKeyLength < 32) {
stream.skipRawData(32 - nameKeyLength);
}
if (ivTableLength < 16) {
qWarning() << "IV table length too small!";
return;
}
for (quint32 i = 0; i < ivTableLength - 16; i++) {
if (stream.atEnd()) {
qWarning() << "Stream ended while filling IV table!";
return;
}
quint8 ivVal;
stream >> ivVal;
ivTable[i] = ivVal;
}
}
static void fillIV(int index, QByteArray& ivPtr, const QByteArray& ivTable, const QVector<quint32>& ivCounter)
{
if (index < 0 || index >= ivCounter.size()) {
qWarning() << "Invalid IV index: " << index;
return;
}
int ivOffset = ((index + 4 * (ivCounter[index] - 1)) % 800) * 20;
if (ivOffset + 8 > ivTable.size()) {
qWarning() << "IV offset out of bounds! Offset: " << ivOffset;
return;
}
ivPtr = ivTable.mid(ivOffset, 8);
}
static void generateNewIV(int index, const QByteArray& hash, QByteArray& ivTable, QVector<quint32>& ivCounter)
{
if (index < 0 || index >= ivCounter.size()) {
qWarning() << "Invalid index: " << index;
return;
}
quint32 safeCounter = fmin(ivCounter[index], 800u - 1);
int ivOffset = (index + 4 * safeCounter) % 800 * 5;
for (int i = 0; i < 20; i++) {
if (ivOffset + i >= ivTable.size()) {
qWarning() << "Index out of bounds for IV table!";
return;
}
ivTable[ivOffset + i] ^= hash[i];
}
ivCounter[index]++;
}
static QByteArray decryptFastFile(const QByteArray& fastFileData)
{
const QByteArray bo2_salsa20_key = QByteArray::fromHex("641D8A2FE31D3AA63622BBC9CE8587229D42B0F8ED9B924130BF88B65EDC50BE");
QByteArray fileData = fastFileData;
QByteArray finalFastFile;
QByteArray ivTable(16000, 0);
fillIVTable(fileData, ivTable, 16000 - 1);
QVector<quint32> ivCounter(4, 1);
QDataStream stream(fileData);
stream.setByteOrder(QDataStream::LittleEndian);
stream.skipRawData(0x138);
QByteArray sha1Hash(20, 0);
QByteArray ivPtr(8, 0);
int chunkIndex = 0;
while (!stream.atEnd()) {
quint32 dataLength;
stream >> dataLength;
if (dataLength == 0 || dataLength > fileData.size() - stream.device()->pos()) {
qWarning() << "Invalid data length at offset: " << stream.device()->pos();
break;
}
fillIV(chunkIndex % 4, ivPtr, ivTable, ivCounter);
ECRYPT_ctx x;
ECRYPT_keysetup(&x, reinterpret_cast<const u8*>(bo2_salsa20_key.constData()), 256, 0);
ECRYPT_ivsetup(&x, reinterpret_cast<const u8*>(ivPtr.constData()));
QByteArray encryptedBlock = fileData.mid(stream.device()->pos(), dataLength);
QByteArray decryptedBlock;
decryptedBlock.resize(dataLength);
ECRYPT_decrypt_bytes(&x, reinterpret_cast<const u8*>(encryptedBlock.constData()),
reinterpret_cast<u8*>(decryptedBlock.data()), dataLength);
QCryptographicHash sha1(QCryptographicHash::Sha1);
sha1.addData(decryptedBlock);
sha1Hash = sha1.result();
z_stream strm = {};
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = static_cast<uInt>(decryptedBlock.size());
strm.next_in = reinterpret_cast<Bytef*>(decryptedBlock.data());
QByteArray decompressedData;
decompressedData.resize(fmax(dataLength * 2, 4096));
strm.avail_out = decompressedData.size();
strm.next_out = reinterpret_cast<Bytef*>(decompressedData.data());
int zReturn = inflateInit2(&strm, -15);
if (zReturn != Z_OK) {
qWarning() << "inflateInit2 failed with error code" << zReturn;
break;
}
zReturn = inflate(&strm, Z_FINISH);
inflateEnd(&strm);
if (zReturn != Z_STREAM_END) {
qDebug() << "Error decompressing at offset: " << stream.device()->pos() << " : " << zReturn;
decompressedData.clear();
} else {
decompressedData.resize(strm.total_out);
}
finalFastFile.append(decompressedData);
generateNewIV(chunkIndex % 4, sha1Hash, ivTable, ivCounter);
if (stream.device()->pos() + static_cast<qint64>(dataLength) > fileData.size()) {
qWarning() << "Skipping past file size!";
break;
}
stream.skipRawData(dataLength);
chunkIndex++;
}
return finalFastFile;
}
2025-02-08 19:58:54 -05:00
};
2025-04-04 20:34:24 -04:00
#endif // ENCRYPTION_H